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Noether’s theorem and time-dependent quantum invariants* 

0 Castaiios, R L6pez-Peiia and V I Man‘kot 
Instituto de Ciencias Nucleares, UNAM Apaxtamendo Postal 70-543, 04510 Mhico, DF, 
M6xico - 

~~ 

Received 1 September 1993 

Abstract. The time-dependent integrals of motion, linear in position and momentum operators, 
of a quantum system are extracted fromNoether’s theorem prescription by means of special time- 
dependent variations of coordinates. For the stationary case of the geqecalizd two-dimensional 
harmonic oscillator, the time-independent integrals of motion are shown to correspond to special 
Bragg-type symmetry properties. A detailed study for the non-stationary case of h i s  quantum 
system is presented. The linear integrals of motion are constructed explicitly for the cae of 
varying mass and coupling svength They are also obtained from Noether’s theorem. The 
general tmlment fora  multi-dimensional quadratic system is indicated and it is shown that the 
timedependent variations t h t  give rise to the linear invariants, as conserved quantities, satisfy 
the corresponding classical homogeneous equations of motion for the coordinates. 

~~ 

1. Introduction 

For some stationary and non-stationary systems the time-dependent integrals of motion have 
been constmcted explicitly [1-5]. On the other hand it is well known that the integrals of 
the motion of classical and quantum systems are related to the symmemy of the system. 
This relation is expressed by Noether’s theorem [6,7]. The generalized stationary two- 
dimensional oscillator has been analysed from the point of view of Noether’s theorem [8]. 
In this work based on Noether’s theorem the timeindependent integmls of the motion that 
are polynomials in the position and momentum operators were found. 

Lewis and RiesenfeId [I] constructed integrals of motion quadratic in position and 
momentum operators for a time-dependent onedimensional oscillator and for a charged 
spinless particle moving in a homogeneous varying magnetic field. In [2] the time-dependent 
integrals of motion that are linear in position and momentum operators have been found for 
a charged particle moving in a time-dependent homogeneous magnetic field. In [3] the linear 
time-dependent integrals of motion have been obtained for the quantum forced oscillator 
with time-dependent frequency. Using these integrals of motion the dynamical symmetries 
SU(2)  and SLI(1, 1) 131 have been associated with the charged particle moving in a varying 
magnetic field and the parametric quantum oscillator. In [4] the time-dependent invariants, 
linear in position and momentum operators, have been Found for multi-dimensional quantum 
systems the Hamiltonian of which is a non-stationary general quadratic form in position and 
momentum operators. These integrals of motion have been used to construct the propagator, 
coherent states and transition amplitudes between the energy levels of the system in terms of 
symplectic transformations ZSp(2N.  R) [4,5]. The time-dependent integrals of motion give 
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a useful method for finding the propagator of quantum systems using the system of equations 
found in [9] (see also 151). Urrutia and Hernindez [IO] considered a non-stationary damped 
harmonic oscillator, and have proved that the relation of linear time-dependent integrals of 
motion to the propagator is close in spirit to the Schwinger action principle method. In 
[Ill,  and more recently [I?.], the connection between time-dependent integrals of motion 
of some examples of stationary physical problems and the dynamical symmetry concept of 
quantum systems has been emphasized. 

On the other hand, up to now it was not clear how the time-dependent integrals of motion 
found in [I-51 could be obtained from the canonical procedure of Noether’s approach nor 
what symmetry corresponds to linear time-dependent integrals of motion of non-stationary 
multi-dimensional forced harmonic oscillator. The aim of the present work is to show that 
such a variation in coordinates for the generalized oscillator [8] as well as for the non- 
stationary one- and multi-dimensional oscillators for which Lagrangian variation is reduced 
to a total time-derivative term exist. So from normal Noether’s theorem we will obtain 
linear time-dependent integrals of the motion for the generalized two-dimensional osciIlator 
and connect these integrals with the analogue of the Bragg scattering relation giving the 
time-independent invariants found in 181. We will also consider explicitly the non-stationary 
generalized two-dimensional oscillator with varying mass and a time-dependent coupling 
term proportional to the third component of the angular momentum operator. It is also 
known that timedependent Hamiltonians [5] can generate squeezed states and, therefore, 
we are going to study the two-mode squeezing [13-15] in the framework of this model. 
Finally we show that the analysis made for the generalized two-dimensional oscillator 
can be extended for multi-dimensional non-stationary quadratic systems. Thus we find 
its corresponding time-dependent invariants, linear in position and momentum, by means of 
Noether’s theorem. 

2. Generalized two-dimensional harmonic oscillator 

Following [8] we will recall in this section the properties of the integrals of motion and 
Noether’s theorem for the two-dimensional generalized oscillator. We will start from the 
time-independent system 

where we are using dimensionless units, i.e. h = mo = WO = 1. This Hamiltonian 
is constructed from a two-dimensional harmonic oscillator plus M = x 1 p 2  - x z p l ,  the 
projection of the angular momentum in the 0, direction, with coupling constant A. For 
h = 1, the Hamiltonian (2.1) describes the Landau problem of a charged particle moving 
in a constant magnetic field. Introducing the variables 

and 

which obey commutation relations 
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we can rewrite the Hamiltonian (1.1) in terms of these operators 

H = (1 +A)N+ + (1 - A)N- (2.5) 
where a constant term has been neglected and Ne,  a = &, denotes the number of quanta in 
direction a .  If IAl > 1, Hamiltonian (2.1) has an energy spectrum unbounded from below. 
This spectrum, except for constant terms, is described by the formula 

E, ,  = ( I +  A)n+ +(1  - A)n- = u +Am (2.6) 
with Im/ = U, w - 2, .. . I  or 0 and U = n + + n - , m  = n+ - n - ,  andna = 0,1,2, .  _ _ _  The 
accidental degeneracy of the Hamiltonian (1.5) was explained in [SI by means of Noether's 
theorem and also the existence of time-independent integrals of motion. These constants of 
the motion, depending on the strength of the parameter A, are given by 

(2.7a,b) q+q- .$e? for IAl > 1 

q? $2 e$q? for \AI i 1 (2.7c.4 

V*E* V& for A = TI (2.7eJ) 

where the relative prime integers kl and kz are connected with the rational number A by the 
formula 

kx k2 

with the number E = -1 for IAl e 1 and E = 1 for IAl > 1. The question which we want 
to answer here is how to find the timedependent integrals of motion, linear in position and 
momentum, for the system and how these invariants are related to the integraIs of motion 
(2.7). The system with Hamiltonian (2.5) is quadratic and due to the results in [2-51 there is 
a four-dimensional symplectic matrix defined by A, which relates the linear time-dependent 
integrals of motion with the position and momentum operators: 

where we associate indices 1 and 2 with the labels + and -. Besides this matrix A(t) 
satisfies the first-order differential equation 

d h  
dt 
- = ABB (2. IO) 

with the initial condition A(0) = 14. l4 denotes the 4 x 4 indentity matrix and the matrix 
has the form 

(2.11) 

where 12 denotes the 2 x 2 identity mauix. B is a matrix determined by the Hamiltonian 
(2.5), and, in the case considered, it is 

/ l + A  0 0 o \  
B = [  '0 '  l:A I. 

0 0 o 1 - a  

(2.12) 
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Equation (2.10) may be easily integrated and the integrals of the motion which are linear 
forms in position and momentum may be written down in the form of creation and 
annihilation operators 

AI@) =exp{i(l +h)t)Al(O) Az( t )  =exp(i(l -A)t)AZ(0) (2.13) 

where we choose the initial conditions 

A I  (0) = et M O )  = e-. (2.14) 

Then, the invariants (2.7) are immediately obtained from the integrals of motion (2.13) by 
calculating the operators 

A:' (t)A?(t) for IA[ > 1 (2.15a) 

A:' (r)~p(t) for IAI < 1 (2.15b) 

Ai (0 = et for h = -1 (2.1%) 

A&) =e- for h = 1. (2.154 

By substituting (2.13) and (2.14) into the relations (2.15a,b) and demanding that these 
integrals of motion do not depend on time, we obtain the conditions 

k l ( l + A ) + k z ( l - h ) = O  forp.[> 1 (2.16a) 

k l ( l +  A) -kz(I -A) = 0 for IAI < 1. (2.16b) 

These conditions recall the Bragg relation in x-ray crystallography. Thus for some integers 
kl and k2 the dependence on time of the integrals of motion (2.15) disappears, in agreement 
with the accidental degeneracy implied by equation (2.8). 

3. Linear invariants and Noether's theorem 

We have found, in the previous section, the linear invariants (2.13) and (2.14) simply by 
guessing their form and proving that they are integrals of motion by direct checking. Now 
we will discuss how they can follow from Noether's theorem. Before doing this, to illustrate 
the procedure we consider first how the linear invariants for a onedimensional parametric 
oscillator found in [2,3] follow from Noether's theorem. The Lagrangian of this oscillator 
has the form 

L = 1 24 .z - ' 3 ( t ) 4 2 .  2 (3.1) 

Following the Noether's theorem procedure used in [8] let us consider the variation in 
coordinate 

sq = h(t). (3.2) 

We have used a specific variation depending only on an arbitrary time-dependent function 
h(t), and it is straightforward to calculate the induced variation in the Lagrangian 

6~ = q(8q)' - (w2q)6q = eh([) - 02qh(r). (3.3) 
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This variation can be written as a total time derivative of a function, S2 = hq, with respect 
to time if the function h( t )  satisfies the equation 

6 + 0 2 ( t ) h  = 0 (3.4) 

which is identical to the equation of motion of the physical system. The integrals of motion, 
due to the Noether theorem procedure, are determined by the function Q in the form 

aL 
K ( t )  = -Sq - S2 = hg - hq. (2.5) a4 

Considering trapped particle problems, Glauber [ 161 pointed out that the invariant of [2,3] 
may be obtained by comparing it with the structure of a Wronskian. Since 4 = p ,  expression 
(3.5) gives linear time-dependent integrals of motion. Therefore we have obtained these 
invariants from Noether's theorem. 

Let us now return to the two-dimensional generalized oscillator (2.1) as another and 
more complicated example. The Lagrangian for this system has the form 

~ ( x l ,  x2, X I ,  i Z )  = zm( i f  + i;) - $m(oi  - h2)(x: + x i )  + ~ m ( x 2 i l  - ~ 1 x 2 )  

where, for later convenience, we take into account explicitly the mass and the frequency of 
the oscillator; however, if we, put m = WO = 1 we recover the case discussed in section 1. 
On the basis of experience with the one-dimensional problem let us consider a variation of 
coordinates XI and x2 of the form 

(3.6) 
1 

8x1 h l ( f )  8x2 = hz(t). (3.7) 

The corresponding induced variation in the Lagrangian (3.6) is expressed as 

SL = m ( i l +  Ah2)Xl +m(/& --hhl)fz,--m[& + (U: - Az)hl]xl +m[hhl - ( m i  - h2)h2]xz. 

It may be rewritten in the followin, 0 manner: 

6L = -l(m(k, + Ah2)xi + m(& - b h l ) ~ ~ )  
d 
dt 

+ 2Ah2 + (U: - AZ)hl + 

- 2Ahl + (U: - A2)h2 - -hl x2. 

m 

m 1 
The equations of motion for the generalized oscillator with Lagrangian (3.6) are 

h ,  (Am)' 
m m 
h . (Am)' 
m~ m 

x2 
2 7  X I  = (h - q)nl  - 2AXz - - X I  - - 

x* = (A2 - w:)x2 + 2k.I - - X I  + - XI. 

Comparing the last two terms of (2.8) with (2.91, we conclude again that if the variations of 
coordinates h ~ ( t )  and h&) satisfy the system of equations of motion of the physical system 
the variation of the Lagrangian (2.6) takes the form of a full derivative SL = dQ/df, with 
the function Q defined by 

Q = m(hl + hhl)xl + m(h2 - Ahl)xz. (3.10) 
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Due to the Noether's theorem prescription we have the integrals of motion of the system 
a L  aL  
am, a i z  I ( t )  = -hi + -hz - Q. 

These invariants are linear in positions and momenta 

I ( t )  = (PI + Amxz)hl - mhlxl + ( p z  - Amxlfhz - mkzxz. (3.11) 

Thus we explained from Noether's theorem the existence of linear time-dependent integrals 
of motion. There are four invariants because there exist four independent solutions for the 
system of equations (3.9). These dflerent solutions are denoted by a superindex: hp) ,  h?), 
with 1 < k < 4. This set of constants of motion can be rewritten in the form (2.9), with 
the matrix A defined by the row vectors 

A(" = (k?, hik), -m(kik) +Ahf)), m(Ah\" - $))). (3.12) 

The constants of motion, which we denote by pi0 and xio, satisfy the initial conditions 
plo(0) = P I ,  pzo(0) = p z ,  xlo(0) = X I  and xzo(0) = X Z .  These imply that the matrix 
A(0) = 14. i.e. 

hi(0) =(1.0,0,0)' hl(0) = (0, -A(O), --, 0)' . (3.13~~) 

(3.13b) 

where h,(t) = (hL1), kF) ,  hi3), l ~ $ ) ) ~ ,  CI = 1,2. To find the explicit form of the variations 
hy'(t) and hf)(t), we need to solve the classical equations of motion of the physical system. 
Let us introduce the change of variables 

z = hl f ihz  z* = hl -ihz (3.14) 

1 

1 
m (0) 

hz(0) = (0, I,O,O)' hz(0) = (A(O), O,O, --)' 

which allows us to rewrite the system of differential equations for hl and hz as 

(3.15) 

By means of the transformation 

zft) =m-'pexp I i l ' d r A ( r ) l w ( t )  (3.16) 

equation (3.15) can be simplified to the form 
w +BZw = 0 

with 

(3.17) 

(3.18) 

For appropriate choices of the time-dependent function Q, equation (3.17) can be solved 
and then from expressions (3.14) and (3.16) we have the general solution for (3.9): 
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To find the linear time-dependent integrals of motion of the generalized harmonic 
=~ 1 and A an arbitrary constant. oscillator with constant parameters, we take m = 

The solution of equation (3.17) is 

w(t )  = Aexp(it) + B exp(-it). 

From (3.19) we have the solutions for hl and hl:  

hi(t) = IAIcos(t+At+9a)+IBIcos(t  - h t - $ ~ )  (3.20~) 

h2(t) = IAl sin@ + At + @ A )  + IBI sin@ - ht - @ E )  (3.206) 

where we denoted the complex numbers A and B in polar form C = IC[ exp(i@C). Taking 
into account the initial conditions given in (3.13) we arrive to the four independent solutions 

hl (t) = (cos At cos t ,  - sinht cos t,  -cos ht sint, sinht sin t)= (2.214 

h2(t) = (sinhtcost,cosAtcost,-sinhtsint, -cosAtsint)’. (3.21b) 

Substituting these results in (3.12), we find that the matrix A can be written in blocks of 
2 x 2 mahices hkr 1 < k 4 4 such that 

(3.2246) 

where g1 = p4 = cost and g2 = -p3 = sint. R is a rotation matrix by an k g l e  e = At, 
i.e. 

(3.23) 

Through these expressions it is possible to obtain immediately the constants of motion, 
which can be written down in the form of annihilation operators UkO = ( x k o  + ipM)/&: 

ulo(t) = exp(it)(al cos(ht) +uzsin(At)} 

a~o( t )  = exp(it)(-a] sin(Ar) + u2cos(At)] 

(3.24~) 

(3.246) 

From these we built the annihilation and their correspondent Hermitean conjugates. 
operators (2.3) and found agreement with the results (2.13). 

4. Examples with time-dependent parameters 

We study systems described by the Hamiltonian 

Through Noether’s theorem we obtain linear time-dependent integrals of motion, and from 
these invariants, following [2-51, we can evaluate the evolution operator, the associated 
coherent states and the correlation matrices in pq and utu spaces. In these calculations for 
quadratic Hamiltonians, the fundamental quantity is the symplectic matrix A, which relates 
linear time-dependent integrals of motion with the momentum and position operators. Next 



1758 0 Custarios et a1 

we are going to consider the Hamiltonian (4.1) for several choices of the parameters m and 
A, and determine the analytic expressions for the 2 x 2 submatrices I t  of A. 

First, we consider an exponentially varying mass m = mo exp[yt], and A an arbitrary 
function of time. These parameters imply through (3.18) that Q2 = w,"-y2/4, so considering 
y2  .c 4 4  we solve equation (3.17), and using (3.19) together with the initial conditions 
(3.13), we determine that the matrix A of the system has the structure given in (3.22) but 
in this case the rotation angle is B = $ k ( ~ )  ds and the pk functions take the form 

pi = exp(-yt/2)(cos~t + $y(sinQr/Q)) (4.2~) 

~2 = exp[yt/2)moo,"(sin Q~/Q)  (4.2b) 

113 = --exp[-yt/2)(sinBt/Q) (4.2) 
1 

mo 
p4 = exp[yt/z}(cos Qt - +(sinat/Q)). (4.24 

The case y2  > 4w," is obtained from expressions (4.2) by making the replacement 

Q -+ if21 

with QI = J-, and by means of the elementary relations cosiQl = cosh Ql and 
siniQl/iQl = sinh!+/Ri. Finally, when y = - + h o ,  the corresponding A, matrices are 
obtained from (4.2) by taking the limit when Q -+ 0. 

It is important to note that if we take y = 0, the pk functions take the form 

(4.34 

(4.3b) 

(4.3c) 

p ]  = COSWOt 

p2 = mow0 sin mot 

$3 = -(l/mowo)sinwot 

p4 = cos mot 

,hich, if we take mo = WO = 1 and 
previous section. 
from ;tant, we rex er tk 

(4.34 
asult given in the 

Sometimes it is convenient to write the quantum invariants in the form of creation 
and annihilation operators, because the eigenfunctions of the integrals of motion A(t) = 
(AI  (t) ,  A&)) define solutions of the the-dependent Schrodinger equation or coherent-type 
states of the system: 

(4.4) 

The mauix M is defined through the expression M = gAg-', with the g matrix given by 

and I = is the oscillator length. It is important to emphasize that M is also 
a symplectic matrix. It is sometimes useful to write the matrix M in terms of the 2 x 2 
matrices Mk, 1 < k < 4 

(4 .6~)  

(4.6b) 
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with M3 = M; and Mq = M;. If we consider m = 1, i.e. y = 0 and mo = 1, the operators 
(3.4) can be written 

(4.70) 

(4.76)~ 

where h = l,’ h(s) ds/t, is the average of h during the period of time t .  Taking linear 
combinations as in (2.3) we mive  at the linear time-dependent invariants 

k ( t )  = exp(i(wo +Or]$+ (4.8~) 

e-(t) = exp[i(q -X)t]&. (4.86) 

A I  ( t )  = exp(it}(al cos(%) + a2sin(?;t)] 

A&) = exp(ir](--al sin(%) + azcos(%)) 

Proceeding as in (2.15) we obtain the Bragg-like conditions 

k i ( m o + X ) + k z ( o o - X ) = O  forlXl> 1 (4.9a) 

k l ( m o + ~ ) - k z ( o o - ~ ) = O  for ITI<l .  (4.96) 

Substituting (3.226) into the expressions for the correlation matrices (A.@, given in the 
appendix and using the fact that R is an orthogonal matrix, we have immediately that the 
dispersion matrices u2 are independent on the parameter h, and are diagonal: 

(4.100) 

(4.10b) 

(4.10~) 

Finally taking into account that for the considered system the pk functions are given by 
(4.2) we obtain 

u;y(t) = - A sin2 Qt + YsinZQt ]  2Q I2 (4.116) 
mow 

(4.1 IC) u 2 ( t )  = -% sin2nth. 
PY 

For the values of the parameters y = 0.1 and 00 equal to 1, 1/20 and 1/30, the behaviour of 
the dispersion matrices is illustrated in figures 1, 2 and 3, respectively. In these figures, we 
observe that there is squeezing for the coordinates and stretching for the momenta. It is also 
interesting to note that U,,,, is a negative function; because it is not identical to zero, there 
is correlation between the coordinates and the momenta. If we reverse the sign of y ,  the 
dispersion for the coordinates and momenta are interchanged, and oPy becomes positive. In 
particular, for the case y 2  < 404 shown in figure I ,  the dispersion matrix ffPy is a negative 
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4 
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Fiyre 1. Dispersion mauix behaviour in coordinates and momenta space given by equation 
(4.14). for the wse y = 0.1, and mo = 1 = W. 

oscillating function. Finally, the change in mass as a function of time, in arbitrary units, is 
displayed in figure 4. 

Now we consider a varying m a s  of the form 

t GO 
m(t )  = mocosh2 Qot 0 g t  < T (4.12) 

mo[Qo(t mo - T) sinh QoT +cosh QoT)' T Q f 

which is substituted into (3.18). We solve the ordinary differential equation (3.17) for the 
indicated time ranges, and obtain 

A exp(io0t) + B exp(-hot) 

Fexp(io0t) + G exp(-iwot) 

t < 0 
Cexp(i8t) + D exp(-ifit) O < t < T  

T < t 
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g 

8 
6 e 

4 

4 
P 4 L I I ~  0 0  2 10 20 time 30 40 50 , ~’ 

-14 

time 

Figure 2. Dispenion matrices behaviour in coordinates and momenta space given by 
(4.14) in the limit when y2  + hi. The pmmeWrs used nre y = 0.1 and ma = 1. 

equation 

where fl E m. By asking for continuity conditions for the function u(t) and its 
derivative in t = 0 and t = T, we find the following relations between the constants: 

A + B  A - B  A + B  A - B  D=--- 
2 26 c=- f- 

2 2fi 

Substituting the constants C, D, F and G, into the relation for w(t) ,  it is straightforward 
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time 

g: 
5 

E- 
.* 

.* 4 
0 

~~~~ O O  2 20 40 time 60 80 100 

J 
10 20 ' 30 40 50 

time 

Figure 3. Dispersion muix behaviour in coordinates and momenta space given by the analytic 
continuation of equation (4.14) when y z  > 40;. The p m e t e m  are y = O.l.mo = 1, and 
WO = 1/30. 

but lengthy to build the general solutions (3.19) for (3.9). The constants A and B are 
determined through the initial conditions (3.13). 

This new system will have a A matrix, which has three different functional forms 
according to the time intervals indicated in equation (4.12); however, in all cases the Ak 

matrices have the structure indicated in equation (3.22), with an R matrix identical to the 
one of the previous example: 

(i) The functions pk for t < 0 are obtained by taking y = 0 in expressions (4.3) and, 
similarly, the corresponding dispersion matrix is obtained through the equation (4.1 I). 

(ii) For 0 < t < T, we have to put the corresponding solutions (3.19) into the general 
relation (3.12). The resultins pk functions are 

(4.13~) 

(4.136) 

pj = COS fit f cosh S2ot 

pz = m& cosh Got sin fit + S20 cos fit sinh Qat) 
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300 

200 

,/' 100 

__.-' 
-10 0 10 20 30 40 50  6 

s 

I 

time 

Figure 4. Time dependence of the m s :  the broken curve corresponds to m(r) = meexp(yt). 
and the full curve to equation (4.15). The parameters used to display the plot are mg = 1, y = 
0.1, S2g =0.15, and T = 10. 

p~g = -sin bt/mof&cosh not 

j ~ 4  = [cosh Qot cos 8t - (Qo/fZ) sin 6t sinh Qat]. 

(4.13~) 

(4.13d) 

Substituting these into expressions (4.10) we arrive at the correlation matrices for 0 < t < T 
associated with the system (4.1), with a mass parameter of the form (4.12): 

~ ~~ 

R 
0.A = 

For t 2 T the fiLP functions are given by the following cumbersome expressions: 

P2 = - cos(-oo(t - T )  + bT) 
2 

1 + 1 + - cos(oo(t - T )  + BT) [ :I 
+ ~ ( c o s h ( s i n h ( Q o T ) ]  - T )  + A T )  

2 

(4.14~) 

(4.14b) 

(4.14~) 

(4.15~) 

(4.15b) 
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Qo . 
2Q 

ph = 7 sinh(QoT) - T) + 6T) 

0 0  

2Q 
+ T{cosh(QoT) + Qo(t - T) sinh(QoT)} cos(@& - T) + f iT )  

- [ 1 - 3 cos(oo(t - T) - B T )  I (4.156) 

Substituting these results into equations (4.10) we arrive at the correlation matrices for 
t > T. 

To illustrate this case we make a specific choice for the parameters of mass. We consider 
mo = 00 = I ,  QO = 0.15 and T = 10, which is displayed in figure 4. The behaviour of 
the dispersion matrices for this selection of parameters are shown in figure 5. Although 
the change in mass with respect to time is different from that in the previous example (cf 
figure 4), the general trends for the correlation matrices are similar. For example, upp is an 
increasing function of time starting from its minimum value at t < 0, and there is squeezing 
for the U,,. The main difference appears in the correlation U,$ in this case around the axis 
up, = 0 it is an oscillating function for f large enough, while in the previous cases it was 
negative or zero for any time. 

5. Coherent and Fock States 

Now we are going to build a general expression for the coherent-like states of the studied 
examples. This is carried out by solving the differential equations 

A(f)@o(q, 0 = 0 (5.1) 

where 

A(t) = h p p  + h,q. (5.2a) 

The h, and h, are given in terms of the h k  matrices by 

(5.2~) 

The solution of (5.1) yields the vacuum state of the physical system, which takes the 
form 
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Figure 5. Dispersion matrix behaviour in coordinates and momenta space given in equation 
(3.20% for the c a e  S2o = 0.15, T = 10 and ma = I = oo. 

where c( t )  is the normalization constant. The phase of the wavefunction @+,(q,t) is 
chosen to guarantee that it will be a solution of the time-dependent Schrodinger equation. 
Afterwards some calculations, the final expression for the ground-state wavefunction is 

(5.4) 

In all the studied examples the matrices h k  are of  the form (3.22), which was used in the 
previous expression, together with the definition of the functions p p  and wq by the relations 

(5.5a) 

(5.5b) 
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Next, we build the unitary operator 

which is a power series expansion of integrals of motion and so it is also an invariant. Now 
we apply (5.6) to the vacuum wavefunction (5.4) and, after using a Baker-Campbell- 
Hausdorff formula 1131, equation (S.l), and the action of the position and momentum 
operators, we obtain the wavefunction 

This wavefunction is the general expression for the coherent-like states in the coordinate 
representation of the discussed physical systems. By substituting the appropriate expressions 
for the functions p,,, pq and R into equation (5.7), we obtain the corresponding solutions 
for each case. 

The wavefunction (5.7) can be expressed in terms of multi-dimensional Hermite 
polynomials 1171 by making use of the relation 

Substituting this expression into (5.7) and using the form of the coherent-like states in the 
Fock-like representation, i.e. 

we can obtain the Fock-like states in the coordinate representation: 

(5.10) IHrr lrr ) I  (qlnlnz) = @ o k ,  t)Hn,.n2' "(-(i/fiP;)Rq). 

The multi-dimensional Hermite polynomial can be rewritten as a product of two standard 
one-dimensional Hermite polynomials [17]: 

(5.1 I )  

where we  have used the explicit expression of matlix R. These Fock (5 .  10) and coherent 
(5.7)-like states are associated with the integrals of motion ( 5 . 2 ~ )  and, therefore, they 
represent squeezed and correlated states as shown in the previous section. 
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6. General quadratic case 

In this section we show that the time-dependent invariants, linear in position and momentum, 
can be obtained through the Noether theorem procedure. Let us consider an arbitrary time-~ 
dependent multi-dimensional forced harmonic oscillator [5] 

H = ;Q&p(t)Qp +C,Q, (6.1) 
where we have defined the vector 

& =  i;] 
9" 

which denotes the n position and the n momentum operators and the matrices 

A B  
B = ( c  D) e = ( : )  

that characterize the quadratic form for the Hamiltonian. In equation (6.3), A ,  B ,  C, D,  
stand for n x n matrices, and F, G, for n x 1 matrices. The Hermiticity of the Hamiltonian 
implies that the matrix B is symmetric, and this means the following symmetry conditions 
over the four constituents n x n matrices: 

A' = A B 1 = C  Dl = D .  (6.4) 

Expanding the Hamiltonian (6.1) we obtain 
~ ~ 

H = $&ppmpp + 2Bo.ap.q~ + Dapquqp) + F ~ P ,  + Gpqp (6.5) 

where the symmetry condition (6.4) was used. 
Making a Legendre transformation and using the relation between velocities and 

momenta we obtain the Lagrangian of the system. Following the procedure indicated in 
section 3 to obtain the constants of motion for this system, let us propose an infinitesimal 
variation of coordinates given by 

% = he( t )  (6.6) 

where h(t) is an arbitrary n-dimensional vector depending on time. The corresponding 
variation induced in the Lagrangian of the system can be rewritten as a total time derivative 
of a function a, if the variation in the coordinates satisfies the differential equation 

(heA~j ) '+h , (A- 'B) ,p  - (hn(CA-'jCp)' - h,(CA-'B - D)=p = O  (6.7) 

which represents the homogeneous classical equation of motion for the coordinates of 
the system [18]. For this symmetry transformation the associated conserved quantities, 
according to Noether's theorem, are given by 

J = (A$qp - (A-'B),pqp - A $  Fp)  h,  - A$h,qp + (CA-'),ph,qp 
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There are 2n invariants because the system of equations (6.7) has 2n independent solutions. 
These 2n integrals of the motion can be rewritten in the following matrix form 

where A is a symplectic matrix in 2n dimensions, which is given in terms of the solutions 
(6.7) and the matrices characterizing the physical system 

h(1) (h(l)C - h(1))A-l 
he) (hWC - h(2))A-l 

(6.10) 

(6.11) 

In expression (6.10), the superscript denotes the different solutions for system (6.7), and 
these vector solutions are written horizontally. The initial conditions for these solutions are 

h”) (h(k)c - h(2n))A-I 

I 

The time-dependent column vector A is given by 

A,($) = 1 dt(A;ji$)F, + (CA-I),hLk)Fp + h$)G,). 

and for their derivatives. 

(6.12b) 

We have proved that linear time-dependent invariants for multi-dimensional oscillators 
can be obtained through Noether’s theorem. This is achieved by considering a special 
variation which represents a translation along the classical trajectory of the quadratic system. 
To guarantee the existence of analytic solutions for the integrals of motion, it is only 
necessary to solve the classical equations of motion for this quadratic system. Because 
these invariants are linear in  position ind momentum its quantization is straightforward 
and then, by means of the theory of time-dependent invariants, the corresponding evolution 
operator and other relevant quantities can be determined. 

7. Conclusions 

In this work we have found the time-dependent integrals of the motion, that are linear 
in position and momentum, for the generalized two-dimensional harmonic oscillator using 
Noether’s theorem. We consider, in general, varying mass and coupling strength in equation 
(2.1). The generators of the symmeby group, for an arbitrary time-dependent coupling 
strength, were obtained as a Bragg-like condition on the linear invariants. Using the model 
Hamiltonian (1.1) for specific choices of the time-dependent parameters we found that the 
four-dimensional symplectic matrix relating the invariants with the position and momentum 
operators is of the form indicated in equation (4.10), which implies that the correlation 
matrices are diagonal. The dispersion mawices obtained in the considered examples show 
squeezing and correlation. We have also constructed the corresponding solutions of the 
time-dependent Schrijdinger equation. In particular, we wrote the coherent- and Fock-like 
states in the coordinate representation. Finally, we extended the procedure to find the time- 
dependent integrals of motion, that are linear in position and momentum, for the multi- 
dimensional quadratic Hamiltonian again using Noether’s theorem. The time-dependent 
variations that give rise to these invarianb satisfy the corresponding classical homogeneous 
equations of motion for the coordinates. 



Noether's theorem and time-dependent quantum invariants 1769 

Appendix. Correlation matrices 

We are going to show that, by means of the matrices Ak, the 2 x 2 correlation matrices for 
the position and momentum operators [5] can be immediately evaluated. Let us introduce 
the four-vector notation 

Q = ( P I . P ~ , x I , x z )  s (Qd  1 < a  <4.  (A. 1 ) 

Then the dispersion matrix for the generalized coordinates Q, is 

= ; ( (Q, ,  Qal)  - (Qu)(Qa) (A.2) 

where [eu, Qa] denotes the anticommutator of Qa and Qa. 

straightforward to arrive at the following expression for the correlation matrices: 
From the expression for the linear invariants in terms of the matrix A, it is 

u$t) = &L(t)Ai:(t)u,;Z,(o) 64.3) 

where d ( 0 )  is the dispersion matrix for the initial conditions, i.e. 

U (0) = - 2 ( fimowo'z 0 
&I2 O 

Because A is a symplectic matrix, its inverse is given by the expression A-' = -EA% 
and substituting this result into the expression for u,$(t), we get 

d(t)  = -$&it~mz(~)~~~. (A.5) 

For the general quadratic case the matrix A has the form indicated in (3.22~) and, after 
substituting it into the last expression, we obtain the correlation matrices 

(Ada) 

(A.6b) 

(A.6c) 

For application to quantum optics, it is sometimes convenient to express the 2 x 2 correlation 
matrices in terms of the creation and annihilation operators; that is, 

(A.7a) 

(A.7b) 

(A.7c) 
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