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Noether’s theorem and time-dependent quantum invariants*

O Castafios, R Lépez-Pefia and V [ Man’kot

Tnstituto de Ciencias Nucleares, UNAM Apartamendo Postal 70-543, 04510 México, DF,
México - . .

Received 1 September 1993

Abstract. The time-dependent integrals of motion, linear in position and momentum operators,
of a quantum system are extracted from Noether’s theorem prescription by means of special time-
dependent variations of coordinates. For the stationary case of the generalized two-dimensional
harmonic oscillator, the time-independent integrals of motion are shown to correspond (o special
Bragg-type symmetry properties, A detailed study for the non-stationary case of this quantum
system is presented. The linear integrals of motion are constructed explicitly for the case of
varying mass and coupling strength. They are also obtained from Noether’s theorem. The
genera) treatment for a ynlti-dimensional quadratic system is indicated and it is shown that the
time-dependent variations that give rise to the linear invariants, as conserved quantities, satisfy
the corresponding classical homogeneous equations of motion for the coordinates.

1. Introduction

For some stationary and non-stationary systems the time-dependent integrals of motion have
been constructed explicitly [1-3]. On the other hand it is well known that the integrals of
the motion of classical and quanium systems are related to the symumetry of the system.
This relation is expressed by Noether’s theorem [6,7]). The generalized stationary two-
dimensional oscillator has been analysed from the point of view of Noether’s theorem [8].
In this work based on Noether’s theorem the time-independent integrals of the motion that
are polynomials in the position and momentum operators were found.

Lewis and Riesenfeld [1] constructed integrals of motion quadratic in position and
momentum operators for a time-dependent one-dimensional oscillator and for a charged
spinless particle moving in a homogeneous varying magnetic field. In [2] the time-dependent
integrals of motion that are linear in position and momentum operators have been found for
a charged particle moving in a time-dependent homogeneous magnetic field. In [3] the linear
time-dependent iniegrals of motion have been obtained for the quantum forced oscillator
with time-dependent frequency. Using these integrals of motion the dynamical symmetries
SU(2) and SU{1, 1) [3] have been associated with the charged particle moving in a varying
magnetic field and the parametric quantum oscillator. In [4] the time-dependent invariants,
linear in position and momentum operators, have been found for multi-dimensional quantum
systems the Hamiltonian of which is a non-stationary general quadratic form in position and
momentum operators. These integrals of motion have been used to construct the propagator,
coherent states and transition amplitudes between the energy levels of the system in terms of
symplectic transformations I Sp(2N . R) [4,5]. The time-dependent integrals of motion give
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a useful method for finding the propagator of quantum systems using the system of equations
found in [9] (see also [5]). Urrutia and Herndndez [10] considered a non-stationary damped
harmonic oscillator, and have proved that the relation of lincar time-dependent integrals of
motion to the propagator is close in spirit to the Schwinger action principle method. In
[11], and more recently [12], the connection between time-dependent integrals of motion
of some examples of stationary physical problems and the dynamical symmetry concept of
quantum systems has been emphasized.

On the other hand, up to now it was not clear how the time-dependent integrals of motion
found in [1-5] could be obtained from the canonical procedure of Noether’s approach nor
what symmetry corresponds to linear time-dependent integrals of motien of non-stationary
multi-dimensional forced harmonic oscillator. The aim of the present work is to show that
such a variation in coordinates for the generalized oscillator [8] as well as for the non-
stationary one- and multi-dimensional oscillators for which Lagrangian variation is reduced
to a total time-derivative term exist. So from normal Noether’s theorem we will obtain
linear time-dependent integrals of the motion for the generalized two-dimensional oscillator
and connect these integrals with the analogue of the Bragg scattering relation giving the
time-independent invariants found in [8]. We will also consider explicitly the non-stationacy
generalized two-dimensional oscillator with varying mass and a time-dependent coupling
term proportional to the third component of the angular momentum operator. It is also
known that time-dependent Hamiltonians [5] can generate squeezed states and, therefore,
we are going to study the two-mode squeezing [13-15] in the framework of this model.
Finally we show that the analysis made for the generalized iwo-dimensional oscillator
can be extended for multi-dimensional non-stationary quadratic systems. Thus we find
its corresponding time-dependent invariants, linear in position and momentum, by means of
Noether’s theorem.

2. Generalized two-dimensional harmonic oscillator

Following [8] we will recall in this section the properties of the integrals of motion and
Noether’s theorem for the two-dimensional generalized oscillator. We will start from the
time-independent system

1 2
H=: S+ xD +AM Q1)
i=1

where we are using dimensionless units, ie. i = mp = wy = 1. This Hamiltonian
is constructed from a two-dimensional harmonic eoscillator plus M = x,ps — x2p), the
projection of the angular momentum in the O, direction, with coupling constant A. For
A == 1, the Hamiltonian (2.1) describes the Landau problem of a charged particle moving
in a constant magnetic field. Introducing the varjables

o = %{x,- —ip)  a=—stntip)  1=12 22)
and
1 oe .y 1 ,
= = =\ 2. + = —=\a] 2 .
7 —ﬁ(a tiaz) 3 ﬁ(a T iay) (2.3)

which obey commutation relations
[Eﬁh Ub] = Ogh [fa! §b] = I’Tm nb} =0 d,b = +a - (24)
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we can rewrite the Hamiltonian (1.1) in terms of these operators )
H=({(01+MN.+{Q-MN_ . 2.5)

where a constant term has been neglected and N,, a = &, denotes the number of quanta in
direction a. If |A| > 1, Hamiltonian {2.I) has an energy spectrum unbounded from below.
This spectrum, except for constant terms, is described by the formula

Eus = A+ Mnp + (0= AMn_=v+Aim 2.6)

with |mi=v,v—2,...lorO0andv=n,+n.,m=ny—r_,andns =0,1,2,.... The
accidental degeneracy of the Hamiltonian (1.5) was explained in [8] by means of Noether’s
theorem and also the existence of time-independent integrals of motion. These constants of
the motion, depending on the strength of the parameter A, are given by

e g g for [A] > 1 . (2.7a,b)
WpES &® for <1 @7cd)
naba neéx for A = F1 (2.7

where the relative prime integers ky and %, are connected with the rational number A by the
formula
1= __ A . (2.8)
I-+A £
with the number ¢ = —1 for [A] < | and € = 1 for |A] > 1. The question which we want
to answer here is how to find the time-dependent integrals of motion, linear in position and
momenturn, for the system and how these invarfants are related to the integrals of motion
(2.7). The system with Hamiltonian (2.5) is quadratic and due to the results in [2-5] there is
a four-dimensional symplectic matrix defined by A, which relates the linear time-dependent
integrals of motion with the position and momentum operators:

my0(2) T
wanlt) | _ T2
aw® | = A 2.9
gao(t) g2

where we associate indices 1 and 2 with the labels 4+ and —. Besides this mairix A(r)
satisfies the first-order differential equation

d
_d?: —ASS 2.10)

with the initial condition A(0) = l;. |; denotes the 4 x 4 indentity matrix and the matrix

has the form
(0 b
3= (—lz 0) 2.11)

where |, denotes the 2 x 2 identity matrix. B is a matrix determined by the Hamiltonian
(2.5), and, in the case considered, it is

144 0 0 0
0 1-2 0 0

B=1 o o 142 o0 (2.12)
] g ] 1-A
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Equation {2.10) may be easily integrated and the integrals of the motion which are linear
forms in position and momentum may be written down in the form of creation and
annihilation operators

Ar(t) = exp{i(1 + M)A, (0) Az () = expii(1 — M)z} A (0) (2.13)
where we choose the initial conditions
A(0) =&, Ax(0) =§_. (2.14)

Then, the invariants (2.7) are immediately obtained from the integrals of motion (2.13) by
calculating the operators

Abnyako for [A] > 1 (2.153)
Abvpalte o<1 (2.158)
A =&, for A= —1 (2.15¢)
Az(t) = - for A = L. (2.154)

By substituting (2.13) and (2.14) into the relations (2.154,b) and demanding that these
integrals of motion do not depend on time, we obtain the conditions

BMA+R +kad-2)=0  for|M>1 (2.160)
F(l+2) —ka(l —2) =0  for |A] < 1. (2.16b)

These conditions recall the Bragg relation in x-ray crystallography. Thus for some integers
ky and k;, the dependence on time of the integrals of motion (2.15) disappears, in agreement
with the accidental degeneracy implied by equation (2.8).

3. Linear invariants and Noether’s theorem

We have found, in the previous section, the linear invariants {(2.13) and (2.14) simply by
guessing their form and proving that they are integrals of motion by direct checking. Now
we will discuss how they can follow from Noether’s theorem. Before doing this, to illustrate
the procedure we consider first how the linear invariants for a one-dimensional parametric
oscillator found in [2, 3] follow from Noether's theorem. The Lagrangian of this oscillator
has the form

= 14* — 1e* (g% (3.1)

Following the Noether’s theorem procedure used in [8] let us consider the variation in
coordinate

8q = h{1). (3.2)

We have used a specific variation depending only or an arbitrary time-dependent function
h(t), and it is straightforward to calculate the induced variation in the Lagrangian

5L = G(3q) — (w*q)8q = gh(t) — *gh(t). (3.3)
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This variation can be written as a total time derivative of a function, @ = Aq, with respect
to time if the function 4(f) satisfies the equation

h+o*h =0 (3.4)
which is identical to the equation of motion of the physical system. The integrals of motion,
due to the Noether theorem procedure, are determined by the function €2 in the form

K() = %SQ —Q =hg — hq. 25)

Considering trapped particle problems, Glauber [16] pointed out that the invariant of [2,3]
may be obtained by comparing it with the structure of a Wronskian. Since § = p, expression
(3.5) gives linear time-dependent integrals of motion. Therefore we have obtained these
invariants from Noether’s theorem.

Let us now return to the two-dimensional generalized oscillator (2.1) as another and
more complicated example. The Lagrangian for this system has the form '

L(x1,x2,%1, %) = Sm(F + 12) — dm(@f ~ A2 (xF + x2) + Am(xaiy — x19) (3.6)

where, for later convenience, we take into account explicitly the mass and the frequency of
the oscillator; however, if we put m = @y = 1| we recover the case discussed in section 1,
On the basis of experience with the one-dimensional probiem let us consider a variation of
coordinates x; and x, of the form

dxy =k (r) 8xq = ha(r}. (3.7)
The corresponding induced variation in the Lagrangian (3.6) is expressed as
8L = m(hy + Mho)s1 +mha — Al )z — miAR 4 (@3~ ADA 12 +mhhy — (wd — A2 ol

It may be rewritten in the following manner:

d_ . :
3L = a—t{m(hl + Ma)x; + m(hy — AMy)x;)

—-m [ﬁ] + ghl + 20ho + (w%— lz)kl + (him) hz] X

i
. - . AHLY
—m [hz + in-hz -2\ + (w?, - lz)hz - () h]] Xa. (3.8)
m m
The equations of motion for the generalized oscillator with Lagrangian (3.6) are
2 . , Am)’
=02 = wilx) — 2Axs — Exl — G0) X3

”f (3.9)

m (Ant)

Xy = ()\.2 - wg)xz + 2%, — ;}Ez + Xi.

Comparing the last two terms of (2.8} with (2.9}, we conclude again that if the variations of
coordinates A1 (z) and k() satisfy the system of equations of motion of the physical system
the variation of the Lagrangian (2.6) takes the form of a full derivative 8L = d€2/dr, with
the function £2 defined by

Q= m{h, + Aha)xi + m(hy — Ao (3.10)
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Due to the Noether’s theorem prescription we have the integrals of motion of the system

HOES %h[ -+ gﬁz — £2.
3xy 9o
These invariants are linear in positions and momenta
1(t) = (p1 + Amx2dhy — mhyx) + (p2 — Amx Yhy — mhgxy. G.1D

Thus we explained from Noether’s theorem the existence of linear time-dependent integrals
of motion. There are four invariants because there exist four independent solutions for the
system of equations {3.9). These different solutions are denoted by a superindex: hf"’, hg‘),
with 1 < k& < 4. This set of constants of motion can be rewritten in the form (2.9), with
the matrix A defined by the row vectors

AW = @® B0 P 4 nP), mea® — 50y, (3.12)

The constants of motion, which we denote by p:;p and xj, satisfy the initial conditions
P16(0) = p1, p20(0) = pa, x10(0) = xy and x30(0) = xz. These imply that the matrix
A{0) =y, ie.

h; (0) = ¢1,0,0,0)7 h, (@) = (0, —A(0), —L, 1) L (3.13q)
m(0)
h2(0) = (0, 1,0, )T h;(0) = (A(0), 0, 0, —L)T (3.134)

m(0)
where h, (1) = (b, B2, b, BT, & = 1,2. To find the explicit form of the variations

h?‘)(t) and hg‘) {£), we need to solve the classical equations of motion of the physical system.
Let us introduce the change of variables

z=hy +ihy T =h—ih (3.14)
which allows us to rewrite the system of differential equations for ky and ks as
i+ (3 - :m) i+ [(wg — 13- l(xm)'] z=0. (3.15)
m m
By means of the transformation
e
2ty =m™ Pexp { i f dz A(z) }w(t) (3.16)
0
equation (3.15) can be simplified to the form
B+ Pw=0 (3.17)
with
0t (L) 2 | _ (3.18)
T T\ 2m 2m’ '

For appropriate choices of the time-dependent function £2, equation (3.17) can be solved
and then from expressions (3.14) and (3.16) we have the general solution for (3.9);

hy = ﬁ(wexp {ij:dtl(r)} +w*exp[ —iﬁtdf(l(f)})
1
iv/m

t !
he = Z——(wexp {if0 dz A(r)} —w* exp{ - ifo d_r(l(r)}).

(3.19)
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To find the linear time-dependent integrals of motion of the generalized harmonic
oscillator with constant parameters, we take m = wp = 1 and A ap arbitrary constant.
The solution of equation (3.17) is

w(f) = Aexp(it) + B exp(—it).

From (3.19) we have the solutions for A; and A,:
hi(t) = [Alcos{t + At + $4) + 1B cos(t — At — ) (3.200q)
ha() = |Af sin(t + At + ¢a) + | B| sin(t — At — ¢5) (3.208)

where we denoted the complex numbers A and B in polar form C = |C[exp(i®¥¢). Taking
into account the initial conditions given in (3.13) we arrive to the four independent solutions

hy () = (cos At cost, —sin Af COS¢, — c0s Mt sint, sin Az sin £)7 221a)
ha(2) = (sin At cost, cosAf cost, -~ sin At sin¢, —cos At sin t)T. (3.21h)

Substituting these results in (3.12), we find that the matrix A can be written in blocks of
2 x 2 matrices Ay, 1 €k < 4 such that

A= '(’“ ’“2) o= R - (3:22a,b)
Az g

where 1 = p4 = cost and pg = —pu3 = sint. R is a rotation matrix by an angle 8 = Az,
ie.

cos®  sind . :
R= (— sinf cosé ) ) (3.23)

Through these expressions it is possible to obtain immediately the constants of motion,
which can be written down in the form of annihilation operators azg == (xwm + § pko)/«/i!

aip(t) = exp(it) {a; cos(Af) + a; sin(At)} (3.24q)
ayp(t) = exp(it){—a) sin(Ar} + a; cos(Ais)} (3.248)

and their correspondent Hermitean conjugates. From these we built the aanihilation
operators (2.3) and found agreement with the results (2.13).

4, Examples with time-dependent parameters

We study systems described by the Hamiltonian
—lz p—fz+mw” + Ax p2 — x 7} 4.1)
=3 ne X, X1 P2 — X2p1). -

Through Noether's theorem we obtain linear time-dependent integrals of motion, and from
these invariants, following [2-5], we can evaluate the evolution operator, the associated
coherent states and the correlation matrices in pg and a’a spaces. In these calculations for
quadratic Hamiltonians, the fundamental quantity is the symplectic matrix A, which relates
linear time-dependent integrals of motion with the momentum and position operators. Next
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we are going to consider the Hamiltonian (4.1) for several choices of the parameters m and
A, and determine the analytic expressions for the 2 x 2 submatrices A; of A.

First, we consider an exponentially varying mass m = mgexp{y¢}, and A an arbitrary
function of time. These parameters imply through (3.18) that Q2 = w2—y?/4, so considering
y? < 4&%, we solve equation (3.17), and using (3.19) together with the initial conditions
(3.13), we determine that the matrix A of the system has the structure given in (3.22) but
in this case the rotation angle is § = for A1) d7 and the w, functions take the form

p1 = exp{—yt/2}(cos Q + Ly (sin 1/ Q)) (4.2a)
uz = exp{yt/2tmowi(sin /) (4.2b)
1 >

Hy=—— exp{—yt/2}sin £t/ Q) (4.2¢)
0

s = explyt/2}{cos Qt — %y(sin St/ ). (4.2d)

The case y? > 4w is obtained from expressions (4.2) by making the replacement
Q — iQ[

with Q; = ,/¥2/4 — co%, and by mea.n;s of the elementary relations cosif2; = cosh£2; and
sinif21/i€%; = sinh£2;/2;. Finally, when ¥ = =£2aq, the corresponding A, matrices are
obtained from (4.2) by taking the limit when & — 0.

It is important to note that if we take ¥ =0, the z; functions take the form

{41 = cos gt 4.3a)
s = Mgy Sin wol (4.3b)
w3 = —(1/mowe) sinwyr {4.3¢)
s = COS awot (4.3d)

from which, if we take my = @y = ! and A a constant, we recover the result given in the
previous section.

Sometimes it is convenient to write the quantum invariants in the form of creation
and annihilation operators, because the eigenfunctions of the integrals of motion A(f) =
(A1(r), A2(2)) define solutions of the time-dependent Schrédinger equation or coherent-type
states of the system:

A@) N _ a
(Af(r)) =M (af) ' (44)
The matrix M is defined through the expression M = gAg™', with the g matrix given by
__1 [(ig/mn (1/[)12)
SRV (-—i(zm)lz /b, (43)

and [ = /R/mowy is the oscillator length. It is important to emphasize that M is also
a symplectic matrix. It is sometimes useful to write the matrix M in terms of the 2 x 2
matrices M, | €k < 4

I .

M, = - (x, — imgwghs + ha + — xz) (4.6a)
2 mowy ]
1 . i

My = —~ (—)\.1 + imgwgAa + Ag + lz) (4.6b)
2 oty
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with Mz = M3 and My = MY, If we consider m = 1, i.e. y = 0 and mo = 1, the operators
(3.4) can he written

Ay () = explit}{a cos(rt) + ez sin(he)} . (4.74)
Aa(t) = explit}{—a; sin(Az) + az cos(At)} ' @.76)

where A = f; A(t)dr/z, is the average of A during the period of time z. Taking linear
combinations as in (2.3} we arrive at the linear time-dependent invariants

£.(r) = exp{i(wo + A)1}Ey ' (4.8a)

£-(¢) = expli(wo ~ D). ‘ T 4asp)
Proceeding as in (2.15) we obtain the Bragg-like conditions

fiwg + 2y + kg(ay —2) =0 for [A] > 1 ) T (4.94)

ky(wg 4+ ) = kalewg — 2y =0 for |[A] < L. © (4.9h)

Substituting (3.225) into the expressions for the comrelation matrices (A.6), given in the
appendix and using the fact that R is an orthogonal matrix, we have immediately that the
dispersion matrices o2 are independent on the parameter A, and are diagonal:

fimoes 1
2 oo 2 2
= l 4,10,
O-pp ) [ (mcwo)zﬂﬂ + H‘d-} 2 ( a)
Bl 1
2
p =3 {mowu Uty + (muwo)m#»s} 3 (4.108)
h
2 2 2 2
Ogq = T {11 + (mowo)*p3th. (4.10¢)

Finally taking into account that for the considered system the tu, functions are given by
(4.2) we obtain

Fmgw 2

2y HRO%0 RLANEPTIS OURN S

() = 2 exp(yt) [1 + oD sin” §3¢ 20 sin 291‘] I 4.11a)

o (1) = —— exp(—y1) |1+ V2 s+ Lesinoq | (4.115)
99 Rpon 2632 28

o2 @) = 2P0 G2 an,. @.11¢)
Pq 292

For the values of the parameters ¥ = 0.1 and &g equal 1o 1, 1/20 and 1/30, the behaviour of
the dispersion matrices is illustrated in figures 1, 2 and 3, respectively. In these figures, we
observe that there is squeezing for the coordinates and stretching for the momenta, It is also
interesting to note that o, is a negative function; because it is not identical to zero, there
is correlation between the coordinates and the momenta. If we reverse the sign of y, the
dispersion for the coordinates and momenta are interchanged, and o,,, becomes positive. In
particular, for the case y? < 4w} shown in figure 1, the dispersion matrix oy, is a negative
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Dispersion qq
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Dispersion pgq

~0.04

-0.05

Tigure 1. Dispersion matrix behaviour in coordinates and momenta space given by equation
(4.b4), for the case y = 0.1, and mp = 1 = ey,

oscillating function. Finally, the change in mass as a function of time, in arbitrary units, is
displayed in figure 4.
Now we consider a varying mass of the form
my t <0
m(t) = { mgcosh® Qot 0t gT (4.12)
mo{S2(t — T) sinh QT + cosh QTY T<:

which is substituted into (3.18)., We solve the ordinary differential equation (3.17) for the
indicated time ranges, and obtain

A expliwgt) + B exp(—iwpt) t<0 .
w(z) = § Cexpl(i2t) + D exp(—iQ#) 0T
F exp(icot) + G exp(—iwgt) Tt
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Dispersion pg
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Figure 2. Dispersion matrices behaviour in coordinates and momenta space given by equation
(4.14) in the limit when 2 — 4w}. The parameters used are ¥ = 0.1 and mp = 1.

whete Q = @i — Q%. By asking for continuity conditions for the function w(r) and its
derivative in ¢ = 0 and ¢t = T, we find the following relations between the constants:

_A+B

A-B A+B A-B
C= + D + _

2 28 T2 28

~5 (cos QT + i%g sin fZT)]

B (cos QT — i—% sianT) _A-B (cos ar —i 2% sinfaT)} .
wo 2 Q

Substituting the constants C, D, F and G, into the relation for w(?), it is straightforward

A+B - Q. - A
F = exp(—iwT) [ + (cos QT + i-m— sin QT) +
i)

A
G = exp(iwoT) [ a
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12

iap

bispersion pp

(=1
[
o
[l
(=]
L
=3
3
(=]

50

12

10

o
Dispersion qg

0 20 40 60 80 100

1
N
Dispersiocn Ixy

Figure 3. Dispersion matrix behaviour in ¢oordinates and momenta space given by the analytic
continuation of equation (4.14) when »? > 4wl. The parameters are y = 0.1, my = I, and
ap = 1/30.

but lengthy to build the general solutions (3.19) for (3.9). The constants A and B are
determined through the initial conditions (3.13).

This new system will have a A matrix, which has three different functional forms
according to the time intervals indicated in equation (4.12); however, in all cases the A
matrices have the structure indicated in equation (3.22), with an R matrix identical to the
one of the previous example:

(i} The functions g for ¢ < O are obtained by taking y = 0 in expressions (4.3) and,
similarly, the corresponding dispersion matrix is obtained through the equation (4.11).

(il) For 0 €< ¢ £ T, we have to put the cotresponding solutions (3.19) into the general
relation (3.12). The resulting p; functions are

) = cos 2/ cosh Qot (4.13a)

pa = mof{$2 cosh Qot sin $t + Qg cos £ sinh ot} (4.13B)
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400

H
4
i
[l
]
r
I,

300

200

Mass

100

Figure 4. Time dependence of the mass: the broken curve comresponds to m(r) = myexp(y?),
and the full curve to equation (4.15). The parameters used to display the plot are mo =1, =
0.1, =0.15and T = 10.

M3 = —sin ﬁt/mgfz,cosh Qot (4.13¢)
g = [cosh gt cos 2t — (/) sin S sinh e}, (4.13d)

Substituting these into expressions (4.10) we arrive at the correlation matrices for0 < ¢ < T
associated with the system (4.1), with a mass parameter of the form (4.12):

ﬁmgwg Q?_ 92 Qs
2 (P
Tpp = 1 {Eg — a—- sin (Qt) - 9—; smh(ZQOt) sm(ZQt)
o+ cosh(zszot)[sm Qn+ = cosz(ﬂt)] } (4.14a)
2 h 2 g Q% 280, -
= h* (gt -_— 9 4145
% =7 o sech®(Qg )[ z cos*( )] 2 { )
2 Q3
o2 = 5{ sm(m:) - [“’%z“ ~ T cosz(ﬂt)] tanh(SZot)}lz (4.14¢)
For t 2 T the u; functions are given by the following cumbersome expressions:
I {cos QT coslw(t — T)) @ sin QT sin[coo(‘t T)]} (4.15a)
= wplt — -— — .
1 oy P T 0 .
Q Q ~
g = 20 sinh(QoT)[ [1 - w—} cos(—anlt — T) + QT)
0

+ l:] + 9—j| cos(eo(t — T} + QT)}
iy

+ m"zw" {cosh(sinh(szor)}{ [1 + wﬁ] sin(wo(t — T) + QT)
0

~

— [1 — ??"} sin(—awg(t — T) + s”m} (4.158)
]
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I [
fig = —
3 Nt .\/m/mg

{%" sin Q7T coswp(t —T)] + cos &7 sinfwo(t — T)] ] (4.15¢)

e = Q—_Osinh(SZgT){ - [1 + E] sin(wg(t — T) + QT)
282 @y
+ [1 — E] sin(wg(t — T) — s"m]
wo 1]
+ ;J—é{cosh(QgT) + Qo0 —T) sinh(QoT)}{[l + wﬁ} cos(awolt — T) + &T)
(4]

- [1 - E] cos{awylt — T — s"z:r)}. (4.15d)
an

Substituting these results into equations (4.10) we arrive at the correlation matrices for
t2T.

To illustrate this case we make a specific choice for the parameters of mass. We consider
mo = wy = 1, Qp = 0.15 and T = 10, which is displayed in figure 4. The behaviour of
the dispersion matrices for this selection of parameters are shown in figure 5. Although
the change in mass with respect to time is different from that in the previous example (cf
figure 4), the general trends for the correlation matrices are similar. For example, o, is an
increasing function of time starting from its minimum value at ¢ £ 0, and there is squeezing
for the a,4. The main difference appears in the cormrelation op,: in this case around the axis
opg = 0 it is an oscillating function for 7 large enough, while in the previous cases it was
negative or zero for any time.

5. Coherent and Foack States

Now we are going to build a general expression for the coberent-like states of the studied
examples. This is carried out by solving the differential equations

A1) Do(g, ) =0 6.1
where
A@) = dpp + M0 (5.24)

The X, and A, are given in terms of the A; matrices by

1
Ay = ——=—=(1% A 5.2b
p T (iA1 + mowphs) (5.28)
i
Ag =4/ muwo/%( - P As - }&.4) . (5.2¢)

The solution of (5.1) yields the vacuum state of the physical system, which takes the
form

®o(g. ) = c(t) exp { - %ql;lqu} (5.3)
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Figure 5. Dispersion matrix behaviour in coordinates and momenta space given in equation
{3.20), for the case £24 =0.15, T = 10 and mpy = | = ey,

where c(¢) is the normalization constant. The phase of the wavefunction $4(g,?) is
chosen to guarantee that it will be a solution of the time-dependent Schrédinger equation,
Afterwards some calculations, the final expression for the ground-state wavefunction is

' 1 i g
$o(g, ) = m exp { 7 ‘[‘L;q : Q}- (5.4)

In all the studied examples the matrices A are of the form (3.22), which was used in the
previous expression, together with the definition of the functions 4, and (2, by the relations

1
= — 5.5
Hp T (ire1 4+ mowouts) (5.5a)

i .
Mg = \gmoa)o/%( - o %] +IL4) (55[7)
0l
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Next, we build the unitary operator
D) = explo- Al —o* - A} (5.6)

which is a power series expansion of integrals of motion and so it is also an invariant. Now
we apply (5.6) to the vacuum wavefunction (5.4} and, after vsing a Baker—Campbell—
Hausdorff formula [13], equation (5.1), and the action of the position and momentum
operators, we obtain the wavefunction

I 7%
$.(q,t) =exp [ [azl + = 3 La-a+ ———aﬁq}%(q, 1. 5.7
Hp

This wavefunction is the general expression for the coherent-like states in the coordinate
representation of the discussed physical systerns. By substituting the appropriate expressions
for the functions fi,, i, and R into equation (5.7), we abtain the corresponding solutions
for each case.

The wavefunction (5.7) can be expressed in terms of multi-dimensional Hermite
polynomials [17] by making use of the relation

1 * 5 o 0 e [ B35
exp(~1g0” - o + gaaRy) = Y -—HE (—*R’Y)- .8
n,nz=0 Rt gl 82

Substituting this expression into (5.7) and using the form of the coherent-like states in the
Fock-like representation, i.e.

aﬂ.!anz o 2 o 2
(1, e ) = S { ko %} (5.9)

we can obtain the Fock-like states in the coordinate representation:

(glming) = Bolg, HHE w7 (/R Ra). (5.10)

The multi-dimensional Hermite polynomial can be rewritten as a product of two standard
one-dimensional Hermite polynomials [17]:

. (n1+n2)/2
YN i Hp 1 i
H, sk (——R)——-( J’) H, (—-—[cose;-s-sme ])
n 2 hﬂ'}k, q 2#7’ L '\/zﬁlf.l«pl q q2

[—sinég; + cos qu]) {5.11)

1
H, (_-—
? '\/Eﬁ“'"pl

where we have used the explicit expression of matrix R. These Fock (5.10) and coherent
(5.7)-like states are associated with the integrals of motion (5.2¢) and, therefore, they
represent squeezed and correlated states as shown in the previous section.
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6. General quadratic case
In this section we show that the time-dependent invariants, linear in position and momenturm,

can be obtained through the Noether theorem procedure. Let us consider an arbitrary time-.
dependent multi-dimensional forced harmonic oscillator {5]

H = 5QuBup(®)0p + Ca Oa : (6.1)
where we have defined the vector
Pt
Pn
= 6.2
@ g (6.2)
n

which denotes the # position and the » momentum operators and the matrices

A B F
B= (C D) C=(G) (6.3)

that characterize the quadratic form for the Hamiltonian. In equation (6.3), A, B,C, D,
stand for 7 x 2 matrices, and F, G, for n x 1 matrices. The Hermiticity of the Hamiltonian
implies that the matrix /3 is symmetric, and this means the following symmetry conditions
over the four constituents n X n matrices:

Af=A B'=C D' =D. 6.4
Expanding the Hamiltonian (6.1} we obtain
H = 1(AqpPupp + 2BagPodp + Dapledp) + FaDa + Gpap (6.5)

where the symmetry condition (6.4) was used.

Making a Legendre transformation and using the relation between velocities and
momenta we obtain the Lagrangian of the system. Following the procedure indicated in
section 3 to obtain the constants of motion for this system, let us propose an infinitesimal
variation of cocrdinates given by

8qa = ho(t) (6.6)

where h(z) is an arbitrary s#-dimensional vector depending on time. The corresponding
variation induced in the Lagrangian of the system can be rewritten as a total time derivative
of a function £2, if the variation in the coordinates satisfies the differential equation

(raAg) + ha(A™ Blap — (he{CA™)op)’ — ha(CA™'B — Diog =0 (6.7)

which represents the homogeneous classical equation of motion for the coordinates of
the system [18]. For this symmetry transformation the associated conserved quantities,
according to Noether’s theorem, are given by '

7= (4345 — (A" Blagds — Az} Fis) ha = Aghhads + (CA™Vuphads

!
+ f de(AgyhaFg + (CA™ Vapho Fg + haGu). (6.8)
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There are 2r invariants becanse the system of equations (6.7) has 2n independent solutions.
These 2»n integrals of the motion can be rewritten in the following matrix form

Po(f) \ _ P

(qo (:)) = A®) ( q) +AQ) 69)
where A is a symplectic matrix in 2n dimensions, which is given in terms of the solutions
(6.7) and the matrices characterizing the physical system
h®)  (hC — AWy~

h@ (h@C —h®)4-1

A = . : (6.10)
h@)  (h@)C — he)4-]
The time-dependent column vector A is given by
t
A(t) = f dt (A AR Fg + (CA™Naph® Fp + hEP G,). (6.11)
0

In expression (6.10), the superscript denotes the different solutions for system (6.7), and
these vector solutions are written horizontally. The initial conditions for these solutions are

8 1<i,jsn

KO =[ 6.124

7O 0 a+1<i,j<2n (6.12a)
and for their derivatives, -

: (i Ciy(0) 1<i,j<n

=1 |

O [_Aij(o) n+1<i,j<2n. (6.126)

We have proved that linear time-dependent invariants for multi-dimensional oscillators
can be obtained through Noether's theorem. This is achieved by considering a special
variation which represents a translation along the classical trajectory of the quadratic system.
To guarantee the existence of analytic solutions for the integrals of motion, it is only
necessary to solve the classical equations of motion for this quadratic system. Because
these invariants are linear in position and momentum its quantization is straightforward
and then, by means of the theory of time-dependent invariants, the corresponding evolution
operator and other relevant quantities can be determined.

7. Conclusions

In this work we have found the time-dependent integrals of the motion, that are linear
in position and momentum, for the generalized two-dimensional harmonic oscillator using
Noether’s theorem. We consider, in general, varying mass and coupling strength in equation
(2.1). The generators of the symmetry group, for an arbitrary time-dependent coupling
strength, were obtained as a Bragg-like condition on the linear invariants. Using the model
Hamiltonian (1.1) for specific choices of the time-dependent parameters we found that the
four-dimensional symplectic matrix relating the invariants with the position and momentum
operators is of the form indicated in equation (4.10), which implies that the correlation
matrices are diagonal. The dispersion matrices obtained in the considered examples show
squeezing and correlation. We have also constructed the corresponding solutions of the
time-dependent Schridinger equation. In particular, we wrote the coherent- and Fock-like
states in the coordinate representation. Finally, we extended the procedure to find the time-
dependent integrals of motion, that are linear in position and momentum, for the multi-
dimensional quadratic Hamiltonian again using Noether's theorem. The time-dependent
variations that give rise to these invariants satisfy the corresponding classical homogeneous
equations of motion for the coordinates.
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Appendix. Correlation matrices
We are going to show that, by means of the matrices Az, the 2 x 2 correlation matrices for

the position and momentum operators [5] can be immediately evaluated. Let us introduce
the four-vector notation

Q = (p1. p2. x1, %2) = (Qu) a4 (A1)
Then the dispersion matrix for the generalized coordinates Q, 1S
= 3{{Qa, @1 — (Cu{Qp) (A2}

where {Qg, Qg} denotes the anticommutator of Q, and Qg. .
From the expression for the linear invariants in terms of the matrix A, it is
straightforward to arrive at the following expression for the correlation matrices:

o5(0) = A (DA ()02, (0) ) (A.3)

where oZ{0) is the dispersion matrix for the initial conditions, i.e.

o2 M0} = (ﬁm%wolz 0 : ) (A4)
m_oc'GE 2
Because A is a symplectic matrix, its inverse is glven by the expression A™! = —ZA'E

and substituting this result into the expression for o, 5(t)’ we get
oXt) = -iTA'BAHOTAD. (A.5)

For the general quadratic case the matrix A has the form indicated in (3.224¢) and, after
substiteting it into the last expression, we obtain the correlation matrices

1 1
O'!%p(t) = Ekmomo((mnwo)z lz + A M) (A.6a)
2 h 1 t t
0, (1) = -3 mnwokzll + mowghiAs {A.6h)
2 I 7 ! 2.t
Ogq = E“_—mgwo (XA + (mowo) }\.3}\.3). (A.6c)

For application to quantum optics, it is sometimes convenient to express the 2 x 2 correlation
matrices in terms of the creation and annihilation operators; that is,

o2 =l(mga)o 2 _ 1 0'2)-}- 1oz (A.7a)

aa =3\ T3 %uq Rmgwy P 7 ap
o2, = (02 152 (A75)
aqt 9 i hmowg PP :

I { mpw 1 i
2 00 2 2 2
’ ( R %ay ~ Rimowy %o ) + EG‘T (ATc)
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